HOME > Publications > Articles > Article Abstracts

Article Abstract – Caspi et al. (2019)

Title:

Impacts of invasive annuals on soil carbon and nitrogen storage in southern California depend on the identity of the invader

Authors and affiliations:

Tal Caspi, Lauren A. Hartz, Alondra E. Soto Villa, Jenna A. Loesberg, Colin R. Robins, and Wallace M. Meyer III

Biology Department, Pomona College

Citation:

Ecology and Evolution 9: 4980-4993 (2019)

Abstract:

Non-native plant invasions can alter nutrient cycling processes and contribute to global climate change. In southern California, California sage scrub (hereafter sage scrub), a native shrub-dominated habitat type in lowland areas, has decreased to <10% of its original distribution. Postdisturbance type-conversion to non-native annual grassland, and increasingly to mustard-dominated invasive forbland, is a key contributor to sage scrub loss. To better understand how type-conversion by common invasive annuals impacts carbon (C) and nitrogen (N) storage in surface soils, we examined how the identity of the invader (non-native grasses, Bromus spp.; and non-native forbs, Brassica nigra), microbial concentrations, and soil properties interact to influence soil nutrient storage in adjacent native and invasive habitat types at nine sites along a coast to inland gradient. We found that the impact of type-conversion on nutrient storage was contingent upon the invasive plant type. Sage scrub soils stored more C and N than non-native grasslands, whereas non-native forblands had nutrient storage similar to or higher than sage scrub. We calculate that >940 t C km-2 and >60 t N km-2 are lost when sage scrub converts to grass-dominated habitat, demonstrating that grass invasions are significant regional contributors to greenhouse gas emissions. We found that sites with greater total C and N storage were associated with high cation exchange capacities and bacterial concentrations. Non-native grassland habitat type was a predictor of lower total C, and soil pH, which was greatest in invasive habitats, was a predictor of lower total N. We demonstrate that modeling regional nutrient storage requires accurate classification of habitat type and fine-scale quantification of cation exchange capacity, pH, and bacterial abundance. Our results provide evidence that efforts to restore and conserve sage scrub enhance nutrient storage, a key ecosystem service reducing atmospheric CO2 concentrations.

Full text:

HTML | PDF

© 2001-2019 Bernard Field Station Faculty Advisory Committee
Page last updated 14 May 2019 by Nancy Hamlett.